2022 Water Quality Report for Village of Capac

Water Supply Serial Number: 1110

This report covers the drinking water quality for the Village of Capac for the 2022 calendar year. This information is a snapshot of the quality of the water that we provided to you in 2022. Included are details about where your water comes from, what it contains, and how it compares to United States Environmental Protection Agency (U.S. EPA) and state standards.

Your water comes from 4 groundwater wells. The State performed an assessment of our source water to determine the susceptibility or the relative potential of contamination. The susceptibility rating is on a seven-tiered scale from "very-low" to "very-high" based on geologic sensitivity, well construction, water chemistry and contamination sources. The susceptibility of our source is, Well 1 moderate, Well 3 moderate, Well 6 moderately low, and Well 7 moderately low.

There are no significant sources of contamination in our water supply. We are making efforts to protect our sources by participating in a Well Head Protection program and routinely testing the drinking water for numerous types of natural and manmade contaminates.

If you would like to know more about this report, please contact: Travis Youatt, Village of Capac Manager, 131 N. Main St., 810-395-4355, manager@villageofcapac.com, or www.villageofcapac.com.

Contaminants and their presence in water: Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline (800-426-4791).

Vulnerability of sub-populations: Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune systems disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. U.S. EPA/ Center for Disease Control guidelines on appropriate

means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

Sources of drinking water: The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. Our water comes from wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife.
- Inorganic contaminants, such as salts and metals, can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining or farming.
- Pesticides and herbicides, which may come from a variety of sources such as agriculture and residential uses.
- Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems.

In order to ensure that tap water is safe to drink, the U.S. EPA prescribes regulations that limit the levels of certain contaminants in water provided by public water systems. Federal Food and Drug Administration regulations establish limits for

contaminants in bottled water which provide the same protection for public health.

Water Quality Data

The table below lists all the drinking water contaminants that we detected during the 2022 calendar year. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. Unless otherwise noted, the data presented in this table is from testing done January 1 through December 31, 2022. The State allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants are not expected to vary significantly from year to year. All the data is representative of the water quality, but some are more than one year old.

Terms and abbreviations used below:

- Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there
 is no known or expected risk to health. MCLGs allow for a margin of safety.
- Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water.
 MCLs are set as close to the MCLGs as feasible using the best available treatment technology.
- <u>Maximum Residual Disinfectant Level (MRDL)</u>: The highest level of a disinfectant allowed in drinking water.
 There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
- <u>Maximum Residual Disinfectant Level Goal (MRDLG)</u>: The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
- <u>Treatment Technique (TT)</u>: A required process intended to reduce the level of a contaminant in drinking water.
- N/A: Not applicable
- ND: not detectable at testing limit
- ppm: parts per million or milligrams per liter
- <u>ppb</u>: parts per billion or micrograms per liter
- <u>ppt</u>: parts per trillion or nanograms per liter
- <u>pCi/l</u>: picocuries per liter (a measure of radioactivity)
- <u>Action Level (AL)</u>: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.
- <u>Level 1 Assessment</u>: A study of the water supply to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.
- <u>Level 2 Assessment:</u> A very detailed study of the water system to identify potential problems and determine (if possible) why an *E. coli* MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

Regulated Contaminant	MCL, TT, or	MCLG or	Level Detect	Rang e	Year Sampl	Violatio n Yes/	Typical Source of Contaminant
Arsenic (ppb) 1st Quarter 2nd Quarter 3rd Quarter 4th Quarter	10	0	4.7 4 4.4 5.0	4-5	2022	NO	Erosion of natural deposits; Runoff from orchards; Runoff from glass and electronics production wastes
Barium (ppm)	2	2	.054	N/A	2022	NO	Discharge of drilling wastes; Discharge of metal refineries;
Nitrate (ppm)	10	10	ND	N/A	2022	NO	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural
Fluoride (ppm)	4	4	.74	N/A	2022	NO	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and
Sodium (ppm)	N/A	N/A	110	N/A	2022	NO	Erosion of natural deposits
TTHM Total Trihalomethanes (ppb)	80	N/A	15.6	N/A	2022	NO	Byproduct of drinking water disinfection
HAA5 Haloacetic Acids	60	N/A	2	N/A	2022	NO	Byproduct of drinking water
Chlorine (ppm)	4	4	.49	.02-1 .59	2022	NO	Water additive used to control microbes
Alpha emitters (pCi/L)	15	0	ND	N/A	2017	NO	Erosion of natural deposits
Combined radium (pCi/	5	0	ND	N/A	2021	NO	Erosion of natural deposits
Total Coliform	TT	N/A	N/A	N/A	2022	NO	Naturally present in the
E. coli in the distribution system (positive	See E.	0		N/A			Human and animal fecal waste
Fecal Indicator – E. coli at the source (positive	ТТ	N/A		N/A			Human and animal fecal waste

Per- and polyfluoroalkyl substances (PFAS)							
Regulated Contaminant	MCL, TT, or	MCLG or	Level Detect	Rang e	Year Sampl	Violatio n Yes/	Typical Source of Contaminant
Hexafluoropropylene oxide dimer acid	370	N/A	ND	N/A	2022	No	Discharge and waste from industrial facilities
Perfluorobutane sulfonic acid (PFBS) (ppt)	420	N/A	ND	N/A	2022	No	Discharge and waste from industrial
Perfluorohexane sulfonic acid (PFHxS)	51	N/A	ND	N/A	2022	No	Firefighting foam; discharge and waste
Perfluorohexanoic acid (PFHxA) (ppt)	400,00 0	N/A	ND	N/A	2022	No	Firefighting foam; discharge and waste

Per- and polyfluoroalkyl	substanc	es (PFA	S)				
Regulated Contaminant	MCL, TT, or	MCLG or	Level Detect	Rang e	Year Sampl	Violatio n Yes/	Typical Source of Contaminant
Hexafluoropropylene oxide dimer acid	370	N/A	ND	N/A	2022	No	Discharge and waste from industrial facilities
Perfluorobutane sulfonic acid (PFBS) (ppt)	420	N/A	ND	N/A	2022	No	Discharge and waste from industrial
Perfluorohexane sulfonic acid (PFHxS)	51	N/A	ND	N/A	2022	No	Firefighting foam; discharge and waste
Perfluorononanoic acid (PFNA) (ppt)	6	N/A	ND	N/A	2022	No	Discharge and waste from industrial
Perfluorooctane sulfonic acid (PFOS) (ppt)	16	N/A	ND	N/A	2022	No	Firefighting foam; discharge from electroplating facilities; discharge and waste
Perfluorooctanoic acid (PFOA) (ppt)	8	N/A	ND	N/A	2022	No	Discharge and waste from industrial
Inorganic Contaminant Subject to Action Levels (AL)	Action Level	MCLG	Your Water	Rang e of Resul	Year Sampl ed	Number of Sample	Typical Source of Contaminant
Lead (ppb)	15	0	2.4	ND-1 5	2022	1	Lead service lines, corrosion of household plumbing including fittings and fixtures; Erosion of
Copper (ppm)	1.3	1.3	.40	.025- .46	2022	0	Corrosion of household plumbing systems; Erosion of natural

Additional Monitoring

Unregulated contaminants are those for which the U.S. EPA has not established drinking water standards. Monitoring helps the U.S. EPA determine where certain contaminants occur and whether regulation of those contaminants is needed.

Unregulated Contaminant Name	Average Level Detected	Range	Year Sampled	Comments
Hardness (ppm)	290	N/A	2022	Naturally occurring in ground water
Calcium (ppm)	62	N/A	2022	Naturally occurring in ground water
Iron (ppm)	ND	N/A	2022	Naturally occurring in ground water
Magnesium (ppm)	32	N/A	2022	Naturally occurring in ground water
Sulfate (ppm)	88	N/A	2022	Naturally occurring in ground water

Information about lead: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The Village of Capac is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you have a lead service line it is recommended that you run your water for at least 5 minutes to flush water from both your home plumbing and the lead service line. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Infants and children who drink water containing lead could experience delays in their physical or mental development. Children could show slight deficits in attention span and learning abilities. Adults who drink this water over many years could develop kidney problems or high blood pressure.

Copper is an essential nutrient, but some people who drink water containing copper in excess of the action level over a relatively short amount of time could experience gastrointestinal distress. Some people who drink water containing copper in excess of the action level over many years could suffer liver or kidney damage. People with Wilson's Disease should consult their personal doctor.

Our water supply has 0 lead service lines and 741 service lines of unknown material out of a total of 741. service lines.

Monitoring and Reporting to the Department of Environment, Great Lakes, and Energy (EGLE) Requirements: The State of Michigan and the U.S. EPA require us to test our water on a regular basis to ensure its safety. We met all the monitoring requirements for 2022 but failed to submit the 2021 Water Quality Report to EGLE before the required deadline.

We will update this report annually and will keep you informed of any problems that may occur throughout the year, as they happen. Copies are available at Village of Capac Office at 131 N. Main St. This report will not be sent to you.

We invite public participation in decisions that affect drinking water quality. Village council meetings are held the first and third Monday of each month. For more information about your water or the contents of this report, contact Travis Youatt at 810-395-4355. For more information about safe drinking water, visit the USEPA at http://www.epa.gov/safewater.

IMPORTANT INFORMATION ABOUT YOUR DRINKING WATER Monitoring Requirements Not Met for Village of Capac

The Village of Capac is required to monitor your drinking water for specific contaminants on a regular basis. Results of regular monitoring are an indicator of whether or not our drinking water meets health standards. During the monitoring period of October 1, 2022, to December 31, 2022, we did not complete monitoring for arsenic and therefore, cannot be sure of the quality of your drinking water during that time. The violation **does not** pose a threat to the quality of the supply's water.

What should I do? There is nothing you need to do at this time. This is not an emergency. You do not need to boil water or use an alternative source of water at this time. Even though this is not an emergency, as our customers, you have a right to know what happened and what we are doing to correct the situation.

The table below lists the contaminants we did not properly test for, how often we are supposed to sample for these contaminants, how many samples we are supposed to take, how many samples we took, when samples should have been taken, and the date follow-up samples will be collected.

Contaminants	Required sampling frequency	Number of samples taken	Date sample should have been collected	Date sample will be collected by
Arsenic	1 Every Quarter	0	October 1, 2022 – December 31, 2022	January 1, 2023 – March 31, 2023

What happened? What is being done? We failed to collect our arsenic sample during the required monitoring period. We plan to collect a sample during the monitoring period of January 1, 2023, to March 31, 2023 to return to compliance. Our staff are making every effort to assure this does not happen again.

For more information, please contact Joseph Vandommelon, Operator-in-Charge, at 517-525-4553.

Please share this information with all the other people who drink this water, especially those who may not have received this notice directly (for example, people in apartments, nursing homes, schools, and businesses). You can do this by posting this notice in a public place or distributing copies by hand or mail.

More information about your drinking water is available from the U.S. Environmental Protection Agency Office of Water home page at: http://www.epa.gov/safewater/dwinfo.htm. This notice is being sent to you by the Village of Capac.

The 4th quarter arsenic sample was completed but not submitted to EGLE until June of 2023. The results were sent in too late to remove this violation from the Water Quality Report but the sampling was completed on time.